Statistical Learning

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

y=某產品在200家商店的銷售量

What is Statistical Learning?

Shown are *Sales* vs. *TV*, *Radio* and *Newspaper*, with a blue linear-regression line fit separately to each.

Can we predict Sales using these three? Perhaps we can do better using a model Sales ≈ f(TV, Radio, Newspaper)

2

Notation

- Here, *Sales* is a response, or dependent variable, or target that we wish to predict. We generically refer to the response as *Y*.
- *TV* is a feature, or, independent variable, or input, or predictor; we name it X_1 . Likewise, name *Radio* as X_2 , and so on.
 - We can refer to the input vector collectively as

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$$

Now, we write our model as

 $Y = f(X) + \epsilon$

where ϵ captures measurement errors and other discrepancies.

Notation

Vectors are represented as a column vector

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$$

- We will use *n* to represent the number of distinct data points or observations
- We will let *p* denote the number of variables that are available for predictions
 - A general design matrix or input matrix can be written as an $n \times p$ matrix

$$\begin{pmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{pmatrix}$$

• *Y* is usually a scalar in our example; if we have *n* observations, it can be written as

What is f(X) good for?

- With a good f, we can make predictions of Y at new points X = x.
 - We can understand which components of $X = (X_1, X_1, ..., X_p)$ are important in explaining *Y*, and which are irrelevant. e.g., *Seniority* and *Years of Education* have a big impact on *Income*, but *Marital Status* typically does not.
 - Depending on the complexity of *f*, we may be able to understand how each component X_i of X affects Y.
- In essence, statistical learning refers to <u>a set of</u> <u>approaches for estimating f</u>.

Years of Education

Why estimating f

• Prediction: In many situations, a set of inputs *X* are readily available, but the output *Y* cannot be easily obtained; we can then use \hat{f} as follows

$$\hat{Y} = \hat{f}(X)$$

- In this setting, $\hat{f}(X)$ is often treated as a black box
- There will be reducible and irreducible error
 - Reducible error can be potentially improved by using the most appropriate statistical learning technique to estimate *f*
 - Irreducible error may contain unmeasured variables that are useful in predicting *Y*: since we don't measure them, *f* cannot use them for its prediction. It may also contain unmeasurable variation
- We will focus on the part of the reducible error

Why estimating f

- Inference: We are often interested in understanding the association between Y and X₁, ..., X_P. In this situation, we wish to estimate f, but our goal is not necessarily to make predictions for Y.
 - Which predictors are associated with the response?
 - What is the relationship between the response and each predictor?
 - Can the relationship between Y and each predictor be adequately summarized using a linear equation, or is the relationship more complicated?
- We will see a number of examples that fall into the prediction setting, the inference setting, or a combination of the two.

How to estimating f

• g is the distribution of data which is unknown

- We have training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$
- 1. Choose a model f_{θ}
 - Parametric
 - Explicit assumption
 - Estimating a fix set of parameters
 - Non-parametric
 - No explicit assumption
 - Need a large number of observations
- 2. Choose a quality measure (objective function) for fitting
 - Mean square error (Maximum likelihood)...
- 3. Optimization (fitting) to chose best θ
- Calculus to find close form solution, gradient descent, expectation-maximization...

Supervised vs Unsupervised learning

- Supervised Learning problem
 - In the regression problem, *Y* is quantitative (e.g., price, blood pressure).
 - In the classification problem, Y takes values in a finite, unordered set (survived/died, digit 0-9, cancer class of tissue sample).
 - We have training data (x₁, y₁), ..., (x_n, y_n). These are observations (examples, instances) of these measurements.
- Unsupervised Learning problem
 - No outcome variable, just a set of predictors (features) measured on a set of samples.
 - Objective is fuzzier find groups of samples that behave similarly, find features that behave similarly, find linear combinations of features with the most variation.
- Semi-supervised learning problem
 - Only for *m* of the observations (m < n), we have the response.

Is there an ideal f(X)? In particular, what is a good value for f(X) at any selected value of X, say X = 4? There can be many Y values at X = 4. A good value is

$$f(4) = E(Y|X=4)$$

E(Y|X = 4) means expected value (average) of Y given X = 4. This ideal f(x) =
E(Y|X = x) is called the regression function.

The regression function f(x)

• Also defined for vector X; e.g. $f(x) = f(x_1, x_2, x_3) = E(Y | X_1 = x_1, X_2 = x_2, X_3 = x_3)$

- The ideal or optimal predictor of Y with regard to mean-squared prediction error: f(x) = E(Y|X = x) is the function that minimizes $E[(Y f(X))^2|X = x]$ over all functions f at all points X = x.
- $\epsilon = Y f(x)$ is the <u>irreducible</u> error i.e. even if we knew f(x), we would still make errors in prediction, since at each X = x there is typically a distribution of possible Y values.

For any estimate $\hat{f}(x)$ of f(x), we have $E\left[\left(Y - f(x)\right)^2 \middle| X = x\right] = [\hat{f}(x) - f(x)]^2 + Var(\epsilon)$

How to estimate f

• Typically, we have few if any data points with X = 4 exactly.

- So we cannot compute E(Y|X = x)!
- Relax the definition and let

 $\hat{f}(x) = Ave(Y | X \in N(x))$

where N(x) is some <u>neighborhood</u> of x.

The curse of dimensionality

- Nearest neighbor averaging can be pretty good for small p i.e. p ≤ 4 and large n.
 - We will discuss smoother versions, such as kernel and spline smoothing later in the course.
- Nearest neighbor methods can be lousy when p is large. Reason: the <u>curse of</u> <u>dimensionality</u>. Nearest neighbors tend to be far away in high dimensions.
 - We need to get a reasonable fraction of the *n* values of y_i to average to bring the variance down e.g., 10%.
 - A 10% neighborhood in high dimensions need no longer be local, so we lose the spirit of estimating E(Y|X = x) by local averaging.

The curse of dimensionality

The curse of dimensionality

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

p	1	2	3	4	5	6
(a) Ball with radius <i>R</i>	2R	πR^2	$\frac{4}{3}\pi R^3$	$\frac{\pi^2}{2}R^4$	$\frac{8\pi^2}{15}R^5$	$\frac{\pi^3}{6}R^6$
(b) Hypercube with volume 2^p	2	4	8	16	32	64
r = (a)/(b)	R	$\frac{\pi R^2}{4}$	$\frac{\pi R^3}{6}$	$\frac{\pi^2 R^4}{32}$	$\frac{\pi^2 R^5}{60}$	$\frac{\pi^3 R^6}{384}$

 $S_p = \frac{\pi^2}{\Gamma(\frac{p}{2}+1)} R^p$, it turns out that if we and to cover a fraction of r of the hypercube, we will need a ball with radius $\frac{2}{\pi^{\frac{1}{2}}} [r\Gamma(\frac{p}{2}+1)]^{\frac{1}{p}}$ See chapter 2 of Foundations of Data Science

Parametric and structured models

• The linear model is an important example of a parametric model:

 $f_L(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$

- A linear model is specified in terms of p + 1 parameters $\beta_0, \beta_1, \dots, \beta_p$
- We estimate the parameters by fitting the model to training data.
- Although it is almost never correct, a linear model often serves as a good and interpretable approximation to the unknown true function f(X).

A linear model $f_L(X) = \beta_0 + \beta_1 X$ gives a reasonable fit here

• A quadratic model $f_Q(X) = \beta_0 + \beta_1 X + \beta_2 X^2$ fits slightly better

Simulated example. Red points are simulated values for income from the model

 $income = f(education, seniority) + \epsilon$ f is the blue surface.

• Linear regression model fit to the simulated data $\hat{f}_L(education, seniority) = \hat{\beta}_0 + \hat{\beta}_1 \times education + \hat{\beta}_2 \times seniority$

• More flexible regression model $\hat{f}_s(education, seniority)$ fit to the simulated data. Here we use a technique called a <u>thin-plate spline</u> to fit a flexible surface. We control the roughness of the fit (chapter 7).

• Even more flexible <u>spline regression model</u> $\hat{f}_s(education, seniority)$ fit to the simulated data. Here the fitted model makes no errors on the training data! Also known as <u>overfitting</u>.

Some trade-offs

Prediction accuracy versus interpretability

- Linear models are easy to interpret; thin-plate splines are not.
- Good fit versus over-fit or under-fit
 - How do we know when the fit is just right?
- Parsimony versus black-box
 - We often prefer a simpler model involving fewer variables over a black-box predictor involving them all.

Assessing Model Accuracy

- Suppose we fit a model f(x) to some training data Tr = {x_i, y_i}, i = 1 ... n, and we wish to see how well it performs
 - We could compute the average squared prediction error over Tr: $MSE_{Tr} = Ave_{i \in Tr}[y_i - \hat{f}(y_i)]^2$
- This may be biased toward more overfit models
 - Instead we should, if possible, compute it using fresh test data $Te = \{x_i, y_i\}, i = 1 \dots m, MSE_{Te} = Ave_{i \in Te}[y_i \hat{f}(y_i)]^2$

• The black curve is truth. Red curve on right is MSE_{Te} , grey curve is MSE_{Tr} . Orange, blue and green curves/squares correspond to fits of different flexibility

• Here the truth is smoother, so the smoother fit and linear model do really well

- Here the truth is wiggly and the noise is low, so the more flexible fits do the best.
- Proof of testing error is usually larger than training error

Bias-Variance Trade-off

- Suppose we have fit a model $\hat{f}(x)$ to some training data Tr, and let (x_0, y_0) be a test observation drawn from the population. If the true model is $Y = f(X) + \epsilon$ (with f(x) = E(Y|X = x)), then $E\left[\left(y_0 - \hat{f}(x_0)\right)^2\right] = Bias_{Tr}[\hat{f}(x_0, Tr)]^2 + Var_{Tr}[\hat{f}(x_0, Tr)] + Var(\epsilon)$
- The expectation averages over the variability of y_0 as well as the variability in Tr. Note that $Bias_{Tr}[\hat{f}(x_0,Tr)] = E[\hat{f}(x_0,Tr)] f(x_0)$. Typically as the <u>flexibility</u> of \hat{f} increases, its variance increases, and its bias decreases. So choosing the flexibility based on average test error amounts to a <u>bias-variance trade-off</u>.
 - Proof of the decomposition

Bias-variance trade-off for the three examples

30

Classification Problems

- Here the response variable Y is qualitative e.g. email is one of C = (spam, ham) (ham = good email), digit class is one of C = {0, 1, ..., 9}. Our goals are to:
 - Build a classifier C(X) that assigns a class label from C to a future unlabeled observation X.
 - What is an optimal classifier.
 - Understand how the flexibility affects the classification.

The orange/blue marks indicate the response *Y*, either 0 or 1.

Is there an ideal C(X)? Suppose the K elements in C are numbered 1, 2, ..., K.

$$p_k(x) = \Pr(Y = k | X = x), k = 1, 2, \dots, K.$$

• These are the <u>conditional class probabilities</u> at x; e.g. see little barplot at x = 5. Then the <u>Bayes optimal classifier</u> at x is C(x) = j if $p_j(x) = \max\{p_1(x), p_2(x), \dots, p_k(x)\}$

Nearest-neighbor averaging can be used as before. It also breaks down as dimension grows. However, the impact on $\hat{C}(x)$ is less than on $\hat{p}_k(x)$, $k = 1, \ldots, K$.

Classification: some details

Typically we measure the performance of C(x) using the misclassification error rate:

$$Err_{Te} = Ave_{i \in Te}I[y_i \neq \hat{C}(x_i)]$$

- The Bayes classifier (using the true $\hat{p}_k(x)$) has the smallest error (in the population).
- Support-vector machines build structured models for C(x).
- We will also build structured models for representing the $p_k(x)$. e.g. Logistic regression, generalized additive models.

KNN: K=10

36

 X_1

KNN: K=1

KNN: K=100

38

1/K

Appendix

The Bias-variance tradeoff

•
$$f = f(x), \hat{f} = \hat{f}(x, Tr), Var(X) = E(X^2) - E[X]^2$$

y = f + ε → E(y) = E(f) = f (f is deterministic, independent of Tr and f̂ is independent of ε)

• $MSE = E_x[Bias_{Tr}[\hat{f}(x,Tr)]^2 + Var_D[\hat{f}(x,Tr)]] + \sigma^2$ (Taking expectation over x)

