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What is Statistical Learning?

 Shown are Sales vs. TV, Radio and Newspaper, with a blue linear-regression line fit 

separately to each.

 Can we predict Sales using these three? Perhaps we can do better using a model 𝑆𝑎𝑙𝑒𝑠 ≈
𝑓(𝑇𝑉, 𝑅𝑎𝑑𝑖𝑜, 𝑁𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟)
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y=某產品在200家商店的銷售量



Notation

 Here, Sales is a response, or dependent variable, or target that we wish to 

predict. We generically refer to the response as 𝑌.

 TV is a feature, or, independent variable, or input, or predictor; we name it 𝑋1. 

Likewise, name Radio as 𝑋2, and so on.

 We can refer to the input vector collectively as

𝑋 =

𝑋1
𝑋2
𝑋3

 Now, we write our model as
𝑌 = 𝑓 𝑋 + ϵ

where ϵ captures measurement errors and other discrepancies.
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Notation

 Vectors are represented as a column vector

𝑋 =

𝑋1
𝑋2
𝑋3

 We will use 𝑛 to represent the number of distinct data points or observations

 We will let 𝑝 denote the number of variables that are available for predictions

 A general design matrix or input matrix can be written as an 𝑛 × 𝑝 matrix
𝑥11 ⋯ 𝑥1𝑝
⋮ ⋱ ⋮

𝑥𝑛1 ⋯ 𝑥𝑛𝑝

 𝑌 is usually a scalar in our example; if we have 𝑛 observations, it can be written as
𝑦1
⋮
𝑦𝑛
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What is 𝑓(𝑋) good for?

 With a good 𝑓, we can make predictions of 𝑌 at new 

points 𝑋 = 𝑥.

 We can understand which components of 𝑋 =
(𝑋1, 𝑋1, . . . , 𝑋𝑝) are important in explaining 𝑌, and which 

are irrelevant. e.g., Seniority and Years of Education have a 

big impact on Income, but Marital Status typically does not.

 Depending on the complexity of 𝑓, we may be able to 

understand how each component 𝑋𝑗 of 𝑋 affects 𝑌.

 In essence, statistical learning refers to a set of 

approaches for estimating 𝑓. 
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Why estimating 𝑓

 Prediction: In many situations, a set of inputs 𝑋 are readily available, but the 

output 𝑌 cannot be easily obtained; we can then use መ𝑓 as follows
𝑌 = መ𝑓(𝑋)

 In this setting, መ𝑓(𝑋) is often treated as a black box

 There will be reducible and irreducible error

 Reducible error can be potentially improved by using the most appropriate statistical learning 

technique to estimate 𝑓

 Irreducible error may contain unmeasured variables that are useful in predicting 𝑌: since we don’t 

measure them, 𝑓 cannot use them for its prediction. It may also contain unmeasurable variation

 We will focus on the part of the reducible error
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Why estimating 𝑓

 Inference: We are often interested in understanding the association between 𝑌
and 𝑋1, … , 𝑋𝑃. In this situation, we wish to estimate 𝑓, but our goal is not 

necessarily to make predictions for 𝑌.

 Which predictors are associated with the response?

 What is the relationship between the response and each predictor?

 Can the relationship between Y and each predictor be adequately summarized using a 

linear equation, or is the relationship more complicated? 

 We will see a number of examples that fall into the prediction setting, the 

inference setting, or a combination of the two.
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How to estimating 𝑓

 𝑔 is the distribution of data which is unknown

 We have training set { 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 }

1. Choose a model 𝑓𝜃
 Parametric 

 Explicit assumption

 Estimating a fix set of parameters

 Non-parametric

 No explicit assumption

 Need a large number of observations

2. Choose a quality measure (objective function) for fitting

 Mean square error (Maximum likelihood)…

3. Optimization (fitting) to chose best 𝜃
 Calculus to find close form solution, gradient descent, expectation-maximization…
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Supervised vs Unsupervised learning

 Supervised Learning problem

 In the regression problem, 𝑌 is quantitative (e.g., price, blood pressure).

 In the classification problem, 𝑌 takes values in a finite, unordered set (survived/died, digit 

0-9, cancer class of tissue sample).

 We have training data 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛). These are observations (examples, instances) of 

these measurements.

 Unsupervised Learning problem

 No outcome variable, just a set of predictors (features) measured on a set of samples.

 Objective is fuzzier - find groups of samples that behave similarly, find features that 

behave similarly, find linear combinations of features with the most variation.

 Semi-supervised learning problem

 Only for 𝑚 of the observations (𝑚 < 𝑛), we have the response.
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 Is there an ideal 𝑓(𝑋)? In particular, what is a good value for 𝑓(𝑋) at any 

selected value of 𝑋, say 𝑋 = 4? There can be many 𝑌 values at 𝑋 = 4. A good 

value is
𝑓(4) = 𝐸(𝑌|𝑋 = 4)

 𝐸(𝑌|𝑋 = 4) means expected value (average) of 𝑌 given 𝑋 = 4. This ideal 𝑓(𝑥) =
𝐸(𝑌|𝑋 = 𝑥) is called the regression function.

10



The regression function 𝑓(𝑥)

 Also defined for vector 𝑋; e.g. 

𝑓(𝑥) = 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝐸(𝑌 |𝑋1 = 𝑥1, 𝑋2 = 𝑥2, 𝑋3 = 𝑥3)
 The ideal or optimal predictor of 𝑌 with regard to mean-squared prediction error: 𝑓(𝑥) =
𝐸(𝑌|𝑋 = 𝑥) is the function that minimizes 𝐸[(𝑌 − 𝑓(𝑋))2|𝑋 = 𝑥] over all functions 𝑓 at 

all points 𝑋 = 𝑥.

 ϵ = 𝑌 − 𝑓(𝑥) is the irreducible error — i.e. even if we knew 𝑓(𝑥), we would still make 

errors in prediction, since at each 𝑋 = 𝑥 there is typically a distribution of possible 𝑌
values.

 For any estimate መ𝑓(𝑥) of 𝑓(𝑥), we have

𝐸 𝑌 − 𝑓 𝑥
2
𝑋 = 𝑥 = [ መ𝑓 𝑥 − 𝑓 𝑥 ]2+𝑉𝑎𝑟(ϵ)
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http://www.its.caltech.edu/~mshum/stats/natural2.pdf


How to estimate 𝑓

 Typically, we have few if any data points with 𝑋 = 4 exactly.

 So we cannot compute 𝐸(𝑌|𝑋 = 𝑥)!

 Relax the definition and let

መ𝑓(𝑥) = 𝐴𝑣𝑒(𝑌 |𝑋 ∈ 𝑁 (𝑥))

where 𝑁(𝑥) is some neighborhood of 𝑥.
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The curse of dimensionality

 Nearest neighbor averaging can be pretty good for small 𝑝 i.e. 𝑝 ≤ 4 and large 

𝑛. 

 We will discuss smoother versions, such as kernel and spline smoothing later in the course.

 Nearest neighbor methods can be lousy when 𝑝 is large. Reason: the curse of 

dimensionality. Nearest neighbors tend to be far away in high dimensions.

 We need to get a reasonable fraction of the 𝑛 values of 𝑦𝑖 to average to bring the variance 

down — e.g., 10%.

 A 10% neighborhood in high dimensions need no longer be local, so we lose the spirit of 

estimating 𝐸(𝑌|𝑋 = 𝑥) by local averaging.
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The curse of dimensionality
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The curse of dimensionality

𝑝 1 2 3 4 5 6

(a) Ball with 

radius 𝑅
2R 𝜋𝑅2 4

3
𝜋𝑅3 𝜋2

2
𝑅4
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𝑅5

𝜋3

6
𝑅6

(b) 

Hypercube 

with volume 

2𝑝

2 4 8 16 32 64

𝑟 = (𝑎)/(𝑏) 𝑅 𝜋𝑅2

4

𝜋𝑅3

6
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32

𝜋2𝑅5
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𝜋3𝑅6
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𝑆𝑝 =
𝜋
𝑝
2

Γ(
𝑝

2
+1)

𝑅𝑝, it turns out that if we ant to cover a fraction of 𝑟 of the hypercube, we will need a ball with 

radius 
2

𝜋
1
2

[𝑟Γ(
𝑝

2
+ 1)]

1

𝑝
See chapter 2 of Foundations of Data Science

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

https://www.cs.cornell.edu/jeh/book no so;utions March 2019.pdf
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/


Parametric and structured models

 The linear model is an important example of a parametric model:

𝑓𝐿 𝑋 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝
 A linear model is specified in terms of 𝑝 + 1 parameters 𝛽0, 𝛽1, … , 𝛽𝑝

 We estimate the parameters by fitting the model to training data.

 Although it is almost never correct, a linear model often serves as a good and interpretable 

approximation to the unknown true function 𝑓(𝑋).
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 A linear model 𝑓𝐿 𝑋 = 𝛽0 + 𝛽1𝑋 gives a reasonable fit here

 A quadratic model 𝑓𝑄 𝑋 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋
2 fits slightly better
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 Simulated example. Red points are simulated values for income from the 

model 
𝑖𝑛𝑐𝑜𝑚𝑒 = 𝑓 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠𝑒𝑛𝑖𝑜𝑟𝑖𝑡𝑦 + ϵ

𝑓 is the blue surface.
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 Linear regression model fit to the simulated data
መ𝑓𝐿(𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠𝑒𝑛𝑖𝑜𝑟𝑖𝑡𝑦) = መ𝛽0 + መ𝛽1 × 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + መ𝛽2 × 𝑠𝑒𝑛𝑖𝑜𝑟𝑖𝑡𝑦
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 More flexible regression model መ𝑓𝑠(𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠𝑒𝑛𝑖𝑜𝑟𝑖𝑡𝑦) fit to the simulated 

data. Here we use a technique called a thin-plate spline to fit a flexible surface. 

We control the roughness of the fit (chapter 7).
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 Even more flexible spline regression model መ𝑓𝑠(𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠𝑒𝑛𝑖𝑜𝑟𝑖𝑡𝑦) fit to the 

simulated data. Here the fitted model makes no errors on the training data! Also 

known as overfitting.
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Some trade-offs

 Prediction accuracy versus interpretability

 Linear models are easy to interpret; thin-plate splines are not.

 Good fit versus over-fit or under-fit

 How do we know when the fit is just right?

 Parsimony versus black-box

 We often prefer a simpler model involving fewer variables over a black-box predictor 

involving them all.
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Assessing Model Accuracy

 Suppose we fit a model መ𝑓(𝑥) to some training data 𝑇𝑟 = 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1…n, 

and we wish to see how well it performs

 We could compute the average squared prediction error over Tr:

𝑀𝑆𝐸𝑇𝑟 = 𝐴𝑣𝑒𝑖∈𝑇𝑟[𝑦𝑖 − መ𝑓(𝑦𝑖)]
2

 This may be biased toward more overfit models

 Instead we should, if possible, compute it using fresh test data 𝑇𝑒 = 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1…𝑚, 

𝑀𝑆𝐸𝑇𝑒 = 𝐴𝑣𝑒𝑖∈𝑇𝑒[𝑦𝑖 − መ𝑓(𝑦𝑖)]
2
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 The black curve is truth. Red curve on right is 𝑀𝑆𝐸𝑇𝑒, grey curve is 𝑀𝑆𝐸𝑇𝑟. 

Orange, blue and green curves/squares correspond to fits of different flexibility
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 Here the truth is smoother, so the smoother fit and linear model do really well
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 Here the truth is wiggly and the noise is low, so the more flexible fits do the 

best.

 Proof of testing error is usually larger than training error
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https://stats.stackexchange.com/questions/310687/prove-that-the-expected-mse-is-smaller-in-training-than-in-test


Bias-Variance Trade-off

 Suppose we have fit a model መ𝑓(𝑥) to some training data 𝑇𝑟, and let (𝑥0, 𝑦0) be 

a test observation drawn from the population. If the true model is 𝑌 = 𝑓 𝑋 +
ϵ (with 𝑓(𝑥) = 𝐸(𝑌|𝑋 = 𝑥)), then

𝐸 𝑦0 − መ𝑓(𝑥0)
2
= 𝐵𝑖𝑎𝑠𝑇𝑟[ መ𝑓(𝑥0, 𝑇𝑟)]

2+𝑉𝑎𝑟𝑇𝑟 መ𝑓(𝑥0, 𝑇𝑟) + Var(ϵ)

 The expectation averages over the variability of 𝑦0 as well as the variability in 

𝑇𝑟. Note that 𝐵𝑖𝑎𝑠𝑇𝑟 መ𝑓 𝑥0, 𝑇𝑟 = 𝐸 መ𝑓 𝑥0, 𝑇𝑟 − 𝑓(𝑥0). Typically as the 

flexibility of መ𝑓 increases, its variance increases, and its bias decreases. So 

choosing the flexibility based on average test error amounts to a bias-variance 

trade-off.

 Proof of the decomposition
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https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
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https://nvsyashwanth.github.io/machinelearningmaster/bias-variance/

https://nvsyashwanth.github.io/machinelearningmaster/bias-variance/


Bias-variance trade-off for the three examples
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Classification Problems

 Here the response variable 𝑌 is qualitative — e.g. email is one of 𝐶 =
(𝑠𝑝𝑎𝑚, ℎ𝑎𝑚) (ℎ𝑎𝑚 = 𝑔𝑜𝑜𝑑 𝑒𝑚𝑎𝑖𝑙), digit class is one of 𝐶 = {0, 1, . . . , 9}. 
Our goals are to:

 Build a classifier 𝐶(𝑋) that assigns a class label from 𝐶 to a future unlabeled observation 𝑋.

 What is an optimal classifier.

 Understand how the flexibility affects the classification.
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 Is there an ideal 𝐶(𝑋)? Suppose the 𝐾 elements in 𝐶 are numbered 1, 2, . . . , 𝐾. 

Let 

𝑝𝑘(𝑥) = Pr(𝑌 = 𝑘|𝑋 = 𝑥), 𝑘 = 1, 2, . . . , 𝐾.

 These are the conditional class probabilities at 𝑥; e.g. see little barplot at 𝑥 = 5. Then the 

Bayes optimal classifier at 𝑥 is 𝐶(𝑥) = 𝑗 if 𝑝𝑗(𝑥) = max{𝑝1(𝑥), 𝑝2(𝑥), . . . , 𝑝𝑘(𝑥)}
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The orange/blue marks indicate the response 𝑌, either 0 or 1.

https://en.wikipedia.org/wiki/Bayes_classifier


 Nearest-neighbor averaging can be used as before. It also breaks down as 

dimension grows. However, the impact on መ𝐶(𝑥) is less than on Ƹ𝑝𝑘(𝑥), k = 

1, . . . , K.
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Classification: some details

 Typically we measure the performance of መ𝐶(𝑥) using the misclassification 

error rate:

𝐸𝑟𝑟𝑇𝑒 = 𝐴𝑣𝑒𝑖∈𝑇𝑒𝐼[𝑦𝑖 ≠ መ𝐶(𝑥𝑖)]
 The Bayes classifier (using the true Ƹ𝑝𝑘(𝑥)) has the smallest error (in the population).

 Support-vector machines build structured models for 𝐶(𝑥).

 We will also build structured models for representing the 𝑝𝑘(𝑥). e.g. Logistic regression, 

generalized additive models.
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Example: K-nearest neighbors in two dimensions
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Example: K-nearest neighbors in two dimensions

36



Example: K-nearest neighbors in two dimensions
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Example: K-nearest neighbors in two dimensions
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Appendix
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The Bias-variance tradeoff

 𝑓 = 𝑓 𝑥 , መ𝑓 = መ𝑓 𝑥, 𝑇𝑟 , 𝑉𝑎𝑟 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2

 𝑦 = 𝑓 + ϵ → 𝐸 𝑦 = 𝐸 𝑓 = 𝑓 (𝑓 is deterministic, independent of 𝑇𝑟and መ𝑓 is 

independent of ϵ)

 𝑉𝑎𝑟 𝑦 = 𝐸 𝑦 − 𝐸 𝑦
2
= 𝐸 𝑦 − 𝑓 2 = 𝐸 ϵ2 = 𝑉𝑎𝑟 ϵ + 𝐸[ϵ]2 = 𝜎2

 𝐸 𝑦 − መ𝑓
2
= 𝐸 𝑓 + ϵ − መ𝑓 + 𝐸 መ𝑓 − 𝐸 መ𝑓

2

= 𝐸 𝑓 − 𝐸 መ𝑓
2
+ E ϵ2 + 𝐸 𝐸 መ𝑓 − መ𝑓

2
+ 2E 𝑓 − 𝐸 መ𝑓 ϵ + 2E ϵ 𝐸 መ𝑓 − መ𝑓

+ 2𝐸 𝐸 መ𝑓 − መ𝑓 𝑓 − 𝐸 መ𝑓 = 𝑓 − 𝐸 መ𝑓
2
+ E ϵ2 + 𝐸 𝐸 መ𝑓 − መ𝑓

2

= 𝐵𝑖𝑎𝑠[ መ𝑓]2+𝑉𝑎𝑟 መ𝑓 + 𝜎2

 𝑀𝑆𝐸 = 𝐸𝑥[𝐵𝑖𝑎𝑠𝑇𝑟[ መ𝑓(𝑥, 𝑇𝑟)]
2+𝑉𝑎𝑟𝐷 መ𝑓(𝑥, 𝑇𝑟) ] + 𝜎2 (Taking expectation over 𝑥)
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